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Abstract
We investigate the initial-value problem of the nonlinear Liouville hierarchy.
For the general form of the interaction potential we construct a solution in
terms of an expansion over particle clusters whose evolution is described by
the corresponding-order cumulant of evolution operators of a system of finitely
many particles. For the initial data from the space of integrable functions the
existence of a strong solution of the Cauchy problem is proved.

PACS numbers: 05.20.Dd, 45.50.Jf

1. Introduction

The nonlinear Liouville hierarchy that describes the evolution of correlation functions, arises in
many problems of statistical mechanics concerning many-particle systems [1, 2, 7]. However,
today it is still insufficiently studied from the mathematical point of view.

It is well known [4], that all possible states of a classical system of a finite number of
particles are described by the functions interpreted as probability density functions. These
functions are solutions of the initial-value problem of the Liouville hierarchy—the first-order
partial differential equations, whose characteristic equations are Hamilton equations. If the
state of a system is presented in terms of a cluster expansion in new (correlation) functions
one evidently obtains an equivalent description of this state. Now evolution of the correlation
functions is determined by the nonlinear Liouville hierarchy—certain nonlinear first-order
partial differential equations.

In this paper a solution of such nonlinear equations is constructed and presented as an
expansion in terms of particle clusters whose evolution is described by a cumulant (semi-
invariant) of the evolution operators. The latter are determined by the solutions of the
characteristic equations of the linear Liouville equation, i.e., the Hamilton equations. The
interaction potential of the general form is considered, which makes it possible to describe
the general structure of the generator of the nonlinear Liouville hierarchy. The existence of a
strong solution of the Cauchy problem with initial data from the space of integrable functions
is proved. A formal treatment of the nonlinear Liouville hierarchy for the case of a pairwise
interaction potential was given by Bogolyubov and Green [1, 2].
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It should be noted that the nonlinear Liouville hierarchy is basic in the substantiation
of the derivation of the nonlinear Bogolyubov hierarchy [2] whose solutions describe the
correlation dynamics of infinite systems of particles. Moreover, this concerns the mathematical
substantiation of the correlation-weakening principle. The correlation functions may be
employed to directly calculate the specific characteristics of the system, i.e., fluctuations,
defined as the average values of the square deviations of an observable from its average value,
as well as macroscopic values which are not averages of observables. The construction of the
nonlinear Bogolyubov hierarchy and the analysis of the solutions thereof on the basis of the
results obtained here will be given in another paper.

2. Initial-value problem of nonlinear Liouville hierarchy

Let us consider a system of non-fixed number of identical particles with phase coordinates
xi = (qi, pi) ∈ R

ν × R
ν, ν � 1. The relevant Hamiltonian is given by the formula

Hn =
n∑

i=1

p2
i

2
+

n∑
k=1

n∑
i1<i2<...<ik=1

�k

(
qi1 , qi2 , . . . , qik

)
,

where �k is the kth order interaction potential. In what follows we assume that the interaction
potential �k, k � 1, satisfies the necessary conditions which provide the existence of global
in time solutions of the Hamilton equations.

The state of the system can be described by a sequence g(t) = (0, g1(t, x1), . . . , gn

(t, x1, . . . , xn), . . .), of correlation functions gn(t, x1, . . . , xn) defined on the phase space
R

νn × R
νn, ν � 1 and symmetric with respect to the permutations of arguments x1, . . . , xn.

The evolution of the states of the above system is described by the initial-value problem
of the nonlinear Liouville hierarchy

d

dt
gn(t, Y ) = (−L|Y |(Y ))gn(t, Y ) +

∑
P:Y=⋃

i

Xi

|P|>1

∑
Zi⊂Xi

−Lint

|
|P|⋃
i=1

Zi |

( |P|⋃
i=1

Zi

) ∏
Xi⊂P

g|Xi |(t, Xi), (1)

gn(t, Y )|t=0 = gn(0, Y ), n � 1, (2)

where the following notation is used: Y ≡ (x1, . . . , xn), |Y | = n denotes the number of
elements of the set Y,

∑
P:Y=⋃

i Xi
is the sum over all possible (in this case) decompositions P

of the set Y into |P| nonempty mutually disjoint subsets,
∑

Zi⊂Xi
is the sum over all nonempty

subsets Zi ⊂ Xi . The Liouville operator Ln for the Hamiltonian Hn is described by the
formulae

Ln ≡ Ln(x1, . . . , xn)

=
n∑

i=1

〈
pi,

∂

∂qj

〉
+

n∑
k=2

n∑
i1<i2<...<ik=1

Lint
k

(
xi1 , xi2 , . . . , xik

)
, (3)

Lint
k

(
xi1 , xi2 , . . . , xik

) = −
n∑

j=1

〈
∂

∂qj

�k

(
qi1 , qi2 , . . . , qik

)
,

∂

∂pj

〉
,

where 〈·, ·〉 is the scalar product.
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The simplest examples of the nonlinear Liouville hierarchy are given by

d

dt
g1(t, x1) = −L1(x1)g1(t, x1),

d

dt
g2(t, x1, x2) = −L2(x1, x2)g2(t, x1, x2) − Lint

2 (x1, x2)g1(t, x1)g1(t, x2),

d

dt
g3(t, x1, x2, x3) = −L3(x1, x2, x3)g3(t, x1, x2, x3)

+
(−Lint

2 (x1, x2) − Lint
2 (x1, x3) − Lint

3 (x1, x2, x3)
)
g1(t, x1)g2(t, x2, x3)

+
(−Lint

2 (x1, x2) − Lint
2 (x2, x3) − Lint

3 (x1, x2, x3)
)
g1(t, x2)g2(t, x1, x3)

+
(−Lint

2 (x1, x3) − Lint
2 (x2, x3) − Lint

3 (x1, x2, x3)
)
g1(t, x3)g2(t, x1, x2)

−Lint
3 (x1, x2, x3)g1(t, x1)g1(t, x2)g1(t, x3).

We note that in the case of a pairwise interaction potential, (k = 2), the nonlinear Liouville
hierarchy (1) is simpler. For example, expression for g3(t) does not contain members with
Lint

3 . This case was considered by Green [2].
In this work the solution (1)–(2) is shown to be given by the formula

gn(t, Y ) =
∑

P:Y=⋃
i

Xi

A|P|(t, YP)
∏
Xi⊂P

g|Xi |(0, Xi), (4)

where Y = (x1, . . . , xn), YP ≡ (X1, . . . , X|P|),
∑

P:Y=⋃
i Xi

is the sum of all possible (in this
case) decomposition P of the set Y into |P| nonempty mutually disjoint subsets Xi . The
evolution operator A|P|(t) i.e., the cumulant (semi-invariant) of the order |P| is given by the
expression [3, 5]

A|P|(t, YP) =
∑

P′:YP=⋃
k

Zk

(−1)|P
′|−1(|P′| − 1)!

∏
Zk⊂P′

S|Zk |(−t, Zk). (5)

The evolution operators Sn(−t), n � 1, are given by

(Sn(−t)gn(0))(x1, . . . , xn) = gn(0, X1(−t, x1, . . . , xn), . . . , Xn(−t, x1, . . . , xn)), (6)

where {Xi(−t, x1, . . . , xn)}ni=1 is the solution of the relevant initial-value problem for the
Hamilton equations. The properties of a group of evolution operator (6) are described in [6].

Let us consider the simplest examples of expansions (4) with the following notation: the
argument xi ∪ xj implies, that two particles ith and j th evolve as a cluster. Thus, if the
arguments of the operator are clusters, they enter on equal terms the expansions in series of
the evolution operators Sn(−t), the order of the cumulant being equal to the number of its
cluster arguments.

g1(t, x1) = A1(t, x1)g1(0, x1),

g2(t, x1, x2) = A1(t, x1 ∪ x2)g2(0, x1, x2) + A2(t, x1, x2)g1(0, x1)g1(0, x2),

g3(t, x1, x2, x3) = A1(t, x1 ∪ x2 ∪ x3)g3(0, x1, x2, x3)

+ A2(t, x1, x2 ∪ x3)g1(0, x1)g2(0, x2, x3)

+ A2(t, x1 ∪ x3, x2)g1(0, x2)g2(0, x1, x3)

+ A2(t, x1 ∪ x2, x3)g1(0, x3)g2(0, x1, x2)

+ A3(t, x1, x2, x3)g1(0, x1)g1(0, x2)g1(0, x3),
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where, for example, the cumulants (5) are given by

A2(t, x1 ∪ x2, x3) = S3(−t, x1, x2, x3) − S1(−t, x3)S2(−t, x1, x2)

A3(t, x1, x2, x3) = S3(−t, x1, x2, x3) − S1(−t, x1)S2(−t, x2, x3)

− S1(−t, x2)S2(−t, x1, x3) − S1(−t, x3)S2(−t, x1, x2)

+ 2!S1(−t, x1)S1(−t, x2)S1(−t, x3).

Formally, the nonlinear Liouville hierarchy (1) can be derived from the sequence of (linear)
Liouville equations which describe the evolution of all possible states of the system of non-
fixed number of particles (the sequence D(t) = (1,D1(x1), . . . , Dn(x1, . . . , xn), . . .), with
the function Dn(t) being regarded as the density of probability distribution of the n-particles
system) [4]

∂Dn(t)

∂t
= −LnDn(t),

Dn(t)|t=0 = Dn(0), n � 1,

provided the state of the system is described in terms of correlation functions, i.e.,

gn(t, Y ) =
∑

P:Y=⋃
i

Xi

(−1)|P|−1(|P| − 1)!
∏
Xi⊂P

D|Xi |(t, Xi), (7)

or at the initial time instant

gn(0, Y ) =
∑

P:Y=⋃
i

Xi

(−1)|P|−1(|P| − 1)!
∏
Xi⊂P

D|Xi |(0, Xi), n � 1, (8)

where Y ≡ (x1, . . . , xn),
∑

P is the sum over all decompositions P of the set Y into |P|
nonempty mutually disjoint subsets Xi .

For example,

g1(t, x1) = D1(t, x1),

g2(t, x1, x2) = D2(t, x1, x2) − D1(t, x1)D1(t, x2).

The solution (4) of the initial-value problem (1)–(2) can be formally derived from (7) and
(8) provided one takes into account that, within the context of (8), we have

D|Xi |(0, Xi) =
∑

P2:Xi=
⋃
k

Zk

∏
Zk⊂P2

g|Zk |(0, Zk).

Then, inasmuch as the solution of the Liouville equation is given by

Dn(t) = Sn(−t)Dn(0),

where Sn(−t) is determined by the solutions of Hamiltonian equations according to (6), we
have

gn(t, Y ) =
∑

P1:Y=⋃
i

Xi

(−1)|P1|−1(|P1| − 1)!
∏

Xi⊂P1

S|Xi |(−t, Xi)
∑

P2:Xi=
⋃
k

Zk

∏
Zk⊂P2

g|Zk |(0, Zk). (9)

Having collected in (9) the terms with similar product of functions g|Zk |(0, Zk), one
obtains (4).
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3. The existence theorem for the initial-value problem of the nonlinear Liouville
hierarchy

Suppose L1
n is the Banach space of integrable functions gn(x1, . . . , xn), defined on the phase

space R
νn×R

νn, ν � 1, of n-particle system, symmetric under the perturbations of arguments.
The norm of an element gn of L1

n is denoted by

‖gn‖ =
∫

R
ν×R

ν

dx1 . . . dxn|gn(x1, . . . , xn)|,

L1
n,0 ⊂ L1

n is a subspace of continuously differentiable functions with compact supports.
The following theorem is true.

Theorem. If gn(0) ∈ L1
n,0 ⊂ L1

n, n � 1, then for t ∈ R
1 there exists a unique strong solution

to the initial-value problem (1)–(2) of the nonlinear Liouville hierarchy (1) given by

gn(t, Y ) =
∑

P:Y=⋃
i

Xi

A|P|(t, YP)
∏
Xi⊂P

g|Xi |(0, Xi),

where A|P|(t) is a cumulant (semi-invariant) of the order |P| (5) of the evolution operators (6).

Proof. Let us show that the expansion (4) is defined in L1
n.

Indeed, within the context of the corollary of the Liouville theorem [6] (isometric property
of operators S|Zk |(−t, Zk)) the following estimate is valid

‖gn(t)‖ =
∫

dY

∣∣∣∣∣∣∣∣
∑

P:Y=⋃
i

Xi

A|P|(t, YP)
∏
Xi⊂P

g|Xi |(0, Xi)

∣∣∣∣∣∣∣∣
=

∫
dY

∣∣∣∣∣∣∣∣
∑

P:Y=⋃
i

Xi

∑
P′:YP=⋃

k

Zk

(−1)|P
′|−1(|P′| − 1)!

∏
Zk⊂P′

S|Zk |(−t, Zk)
∏
Xi⊂P

g|Xi |(0, Xi)

∣∣∣∣∣∣∣∣
�

∑
P:Y=⋃

i

Xi

∑
P′:YP=⋃

k

Zk

(|P′| − 1)!
∏
Xi⊂P

‖g|Xi |(0)‖

� n!en+1
∑

P:Y=⋃
i

Xi

∏
Xi⊂P

‖g|Xi |(0)‖,

i.e., gn(t) ∈ L1
n for any t ∈ R

1.
Let us prove that the expansion (4) is a strong solution of the Cauchy problem of the

nonlinear Liouville hierarchy (1)–(2).
To do this we first differentiate the functions gn(t) with respect to time with regard for

the point-by-point convergence. Let gn(0) ∈ L1
n,0, then inasmuch

d

dt
S|Xi |(−t, Xi) = −L|Xi |(Xi)S|Xi |(−t, Xi),

where the Liouvilian L|Xi | is defined by (3), and according to (9), for each fixed point Y on
any compact from R

νn × R
νn, we have
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d

dt
gn(t, Y ) = d

dt

∑
P:Y=⋃

i

Xi

A|P|(t, YP)
∏

Xi⊂P1

g|Xi |(0, Xi)

= d

dt

∑
P1:Y=⋃

i

Xi

(−1)|P1|−1(|P1| − 1)!
∏

Xi⊂P1

S|Xi |(−t, Xi)
∑

P2:Xi=
⋃
k

Zk

∏
Zk⊂P2

g|Zk |(0, Zk)

=
∑

P1:Y=⋃
i

Xi

(−1)|P1|−1(|P1| − 1)!
∑

Xj ⊂P1

(−L|Xj |(Xj ))

×
∏

Xi⊂P1

S|Xi |(−t, Xi)
∑

P2:Xi=
⋃
k

Zk

∏
Zk⊂P2

g|Zk |(0, Zk).

In view of the equality

S|Xi |(−t, Xi)
∑

P2:Xi=
⋃
k

Zk

∏
Zk⊂P2

g|Zk |(0, Zk) =
∑

P2:Xi=
⋃
i

Zk

∏
Zk⊂P2

g|Zk |(t, Zk),

which follows from (9), we have

d

dt
gn(t, Y ) =

∑
P1:Y=⋃

i

Xi

(−1)|P1|−1(|P1| − 1)!
∑

Xj ⊂P1

(−L|Xj |(Xj )
)

×
∏

Xi⊂P1

∑
P2:Xi=

⋃
i

Zk

∏
Zk⊂P2

g|Zk |(t, Zk)

= (−L|Y |(Y ))gn(Y ) +
∑

P1:Y=⋃
i

Xi

|P1|>1

∑
P2:YP1 =⋃

k

Zk

(−1)|P2|−1(|P2| − 1)!

×
∑

Zk⊂P2

(−L|Zk |(Zk)
) ∏

Xi⊂P1

g|Xi |(t, Xi),

the notation being similar to that in (4) and YP1 ≡ (X1, . . . , X|P|) is the set whose elements
are |P| subsets Xi ⊂ Y .

Since the following identity holds

∑
P:YP=⋃

k

Zk

(−1)|P|−1(|P| − 1)!
∑
Zk⊂P

(−L|Zk |(Zk)
) =

∑
Zi⊂Xi

−Lint∣∣ |P|⋃
i=1

Zi

∣∣
( |P|⋃

i=1

Zi

) ,

where
∑

Zi⊂Xi
is a sum over all nonempty subsets Zi ⊂ Xi and operator Lint∣∣⋃|P|

i=1 Zi

∣∣ is defined

by formulae (3), we come to equations (1). Thus, formula (4) determines the solution of
the initial-value problem of the nonlinear Liouville hierarchy (1) from the viewpoint of the
point-by-point convergence.

Let us show that the strong derivative of the solution (4) reproduces the generator of the
nonlinear Liouville hierarchy (1) in the subspace L1

n,0 ⊂ L1
n .
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For gn(0) ∈ L1
n,0, in the sense of convergence norm of the space L1

n, we have

lim
�t→0

∥∥∥∥∥∥∥∥
∑

P:Y=⋃
i

Xi

∑
P′:YP=⋃

k

Zk

(−1)|P
′|−1(|P′| − 1)!

×
 1

�t

 ∏
Zk⊂P′

S|Zk |(−(t + �t), Zk)
∏
Xi⊂P

g|Xi |(0, Xi)

−
∏

Zk⊂P′
S|Zk |(−t, Zk)

∏
Xi⊂P

g|Xi |(0, Xi)


−

∑
Zi⊂P ′

(−L|Zi |(Zi)
) ∏

Zi⊂P′
S|Zi |(−t, Zi)

∏
Xi⊂P

g|Xi |(0, Xi)

∥∥∥∥∥∥ = 0.

Indeed, within the context of the corollary of the Liouville theorem and the group property of
operators Sn(−t), n � 1, (6) we obtain

lim
�t→0

∥∥∥∥∥∥∥∥
∑

P:Y=⋃
i

Xi

∑
P′:YP=⋃

k

Zk

(−1)|P
′|−1(|P′| − 1)!

×
 1

�t

 ∏
Zk⊂P′

S|Zk |(−(t + �t), Zk)
∏
Xi⊂P

g|Xi |(0, Xi)

−
∏

Zk⊂P′
S|Zk |(−t, Zk)

∏
Xi⊂P

g|Xi |(0, Xi)


−

∑
Zi⊂P ′

(−L|Zi |(Zi)
) ∏

Zi⊂P′
S|Zi |(−t, Zi)

∏
Xi⊂P

g|Xi |(0, Xi)

∥∥∥∥∥∥
= lim

�t→0

∥∥∥∥∥∥∥∥
∑

P:Y=⋃
i

Xi

∑
P′:YP=⋃

k

Zk

(−1)|P
′|−1(|P′| − 1)!

×
 1

�t

 ∏
Zk⊂P′

S|Zk |(−�t,Zk)
∏
Xi⊂P

g|Xi |(0, Xi) −
∏
Xi⊂P

g|Xi |(0, Xi)


−

∑
Zi⊂P ′

(−L|Zi |(Zi)
) ∏

Xi⊂P

g|Xi |(0, Xi)

∥∥∥∥∥∥
=

∫
dY

∣∣∣∣∣∣∣∣
∑

P:Y=⋃
i

Xi

∑
P′:YP=⋃

k

Zk

(−1)|P
′−1(|P′| − 1)!
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× lim
�t→0

 1

�t

 ∏
Zk⊂P′

S|Zk |(−�t,Zk)
∏
Xi⊂P

g|Xi |(0, Xi) −
∏
Xi⊂P

g|Xi |(0, Xi)


−

∑
Zi⊂P ′

(−L|Zi |(Zi)
) ∏

Xi⊂P

g|Xi |(0, Xi)

∣∣∣∣∣∣ .
The last equality is valid because the integrand in this expression tends to zero as �t → 0

uniformly in Y on any compact set. Therefore, we can pass to the limit as �t → 0 in the
integral. Hence, equality (4) is differentiable in the norm of the space L1

n. Thus, for the initial
data from L1

n,0 ⊂ L1
n the corresponding Cauchy problem has a unique strong solution that is

given by expansions (4), (5). �

4. Properties of the solution of the nonlinear Liouville hierarchy

We introduce the evolution operator of the solution (4)∑
P:Y=⋃

i

Xi

A|P|(t, YP)
∏
Xi⊂P

g|Xi |(0, Xi) ≡ (
At (g(0))

)
|Y |(Y ). (10)

For the evolution operator (10), the group property is valid, i.e.,(
At1

(
At2(g(0))

))
|Y |(Y ) = (

At2

(
At1(g(0))

))
|Y |(Y ) = (

At1+t2(g(0))
)
|Y |(Y ).

Indeed, for gn(0) ∈ L1
n, n � 1 and for any t1, t2 ∈ R

1, according to the notation (4) and (5),
we have(
At1

(
At2(g(0))

))
|Y |(Y ) =

∑
P:Y=⋃

i

Xi

A|P|(t1, YP)
∏
Xi⊂P

∑
P′:Xi=

⋃
l

Zl

A|P′|(t2, (Xi)Zl
)

∏
Zi⊂P′

g|Zl |(0, Zl)

=
∑

P:Y=⋃
i

Xi

∑
P1:YP=⋃

k

Qk

(−1)|P1|−1(|P1| − 1)!
∏

Qk⊂P′
S|Qk |(−t1,Qk)

∏
Xi⊂P

×
∑

P′:Xi=
⋃
l

Zl

∑
P2:(Xi )P′=⋃

j

Rj

(−1)|P2|−1(|P2| − 1)!
∏

Rk⊂P2

S|Rk |(−t2, Rk)

×
∏

Zl⊂P′
g|Zl |(0, Zl).

Having collected the items at identical products of the initial data gn(0), n � 1, and taking
into account the group property of the evolution operators Sn(−t), n � 1 (6), we obtain(
At1

(
At2(g(0))

))
|Y |(Y ) =

∑
P:Y=⋃

i

Xi

∑
P′:YP=⋃

l

Zl

(−1)|P
′|−1(|P′| − 1)!

×
∏

Zl⊂P′
S|Zl |(−(t1 + t2), Zl)

∏
Xi⊂P

g|Xi |(0, Xi)

=
∑

P:Y=⋃
i

Xi

A|P|
(
t1 + t2, YXi

) ∏
Xi⊂P

g|Xi |(0, Xi) = (
At1+t2(g(0))

)
n
(Y ).

Similarly, (
At2

(
At1(g(0))

))
n
(Y ) = (

At1+t2(g(0))
)
n
(Y ).
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Let us consider the property of the solution (4) for one physically motivated example of
the initial data that is to say if the initial data for Cauchy problem (1)–(2) satisfy the ‘chaos’
condition [4], in other words, the sequences of correlation functions have the form

g(0) = (1, g1(0, x1), 0, 0, . . .). (11)

Indeed, in terms of the sequences D(0), this condition implies [4] that

D(0) = (1,D1(0, x1),D1(0, x1)D1(0, x2), . . .),

which implies that particle distributions are statistically independent at the initial time instant.
Making use of the relation (8), we obtain the initial condition (11) for the correlation functions.

For the initial data (11), the formula for the solution (4) of the initial-value problem (1)–(2)
is simplified and reduces to

gn(t, x1, . . . , xn) = An(t, x1, . . . , xn)

n∏
i=1

g1(0, xi). (12)

In this case the following estimate holds

‖gn(t)‖ � n!en+1‖g1(0)‖n.

In the case of the initial data (11), the solution (12) of the Cauchy problem for the nonlinear
Liouville hierarchy may be rewritten in a different form. If n = 1, we have

g1(t, x1) = A1(t, x1)g1(0, x1) = g1(0, q1 − p1t, p1)

i.e., an explicit expression that describes the evolution of one particle. Then, within the context
of the definition of the first-order cumulant, A1(t), and inverse to it evolution operator A1(−t),
we can express the correlation functions gn(t), n � 2, in terms of the one-particle correlation
function g1(t) making use of formula (12).

Finally, formula (12) for n � 2 is given by

gn(t, x1, . . . , xn) = Ân(t, x1, . . . , xn)

n∏
i=1

g1(t, xi),

where Ân(t, x1, . . . , xn) is the nth order cumulant of the scattering operators Ŝt , i.e.,

Ŝt (x1, . . . , xn) = Sn(−t, x1, . . . , xn)

n∏
i=1

S1(t, xi),

whose generators are determined by the operator Lint (3) in terms of the interaction potential
of the system.

5. Conclusions

In this paper we derive the solution formula (4) for the initial-value problem for the hierarchy
of equations, which describes the evolution of correlation functions of many-particle systems.
The correlation functions may be employed to directly calculate the fluctuations, defined as
the average values of the square deviations of an observable from its average value, as well
as macroscopic values which are not averages of observables. Moreover, these functions are
basic in the mathematical substantiation of the Bogolyubov correlation-weakening principle
(it is assumed for the derivation of kinetic equations from the underlying dynamics [4]). This
problem will be analyzed in the next paper.
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